History

The concept of camouflage is known to predate warfare itself. Hunters have been using vegetation to conceal themselves perhaps as long as people have been hunting. In England, irregular units of gamekeepers in the 17th century were the first to adopt drab colours (common in 16th century Irish units) as a form of camouflage, following examples from the continent.

During World War I, the Germans experimented with the use of Cellon (Cellulose acetate), a transparent covering material, in an attempt to reduce the visibility of military aircraft. Single examples of the Fokker E.III Eindecker fighter monoplane, the Albatros C.I two-seat observation biplane, and the Linke-Hofmann R.I prototype heavy bomber were covered with Cellon. In fact, sunlight glinting from the material made the aircraft even more visible. Cellon was also found to be quickly degraded both by sunlight and in-flight temperature changes so the attempt to make transparent aircraft was not proceeded with.

In 1916, the British modified a small SS class airship for the purpose of night-time reconnaissance over German lines on the Western Front. Fitted with a silenced engine and a black gas bag, the craft was both invisible and inaudible from the ground but several night-time flights over German-held territory produced little useful intelligence and the idea was dropped.

Diffused lighting camouflage, a shipborne form of counter-illumination camouflage, was trialled by the Royal Canadian Navy from 1941 to 1943. The concept was followed up, but for aircraft, by the Americans and the British: in 1945 a Grumman Avenger with Yehudi lights, reached 3,000 yards (2,700 m) from a ship before being sighted. This ability was rendered obsolete by radar.

The U-boat U-480 may have been the first stealth submarine. It featured an anechoic tile rubber coating, one layer of which contained circular air pockets to defeat ASDIC sonar. Radar absorbent rubber/semiconductor composite paints and materials (codenames: "Sumpf", "Schornsteinfeger") were used by the Kriegsmarine on submarines in World War II. Tests showed they were effective in reducing radar signatures at both short (centimetres) and long (1.5 metre) wavelengths.

In 1956 the CIA initiated attempts to reduced the RCS of the U-2 spyplane. Three systems were developed, Trapeze, a series of wires and ferrite beads around the planform of the aircraft, a covering material with pcb circuitry embedded in it, and radar absorbent paint. These were deployed in the field on the so-called 'dirty birds' but results were disappointing, the weight/drag increase was not worth any reduction in detection rates. More successful was the application of camouflage to the originally bare metal aircraft, a deep blue was found to be most effective. The weight of this cost 250 ft in max altitude but made the aircraft harder to spot by interceptors.

In 1958, the U.S. Central Intelligence Agency requested funding for a reconnaissance aircraft to replace the existing U-2 spy planes, and Lockheed secured contractual rights to produce it.

"Kelly" Johnson and his team at Lockheed's Skunk Works were assigned to produce the A-12 (or OXCART), which operated at high altitude of 70,000 to 80,000 ft and speed of Mach 3.2 to avoid radar detection. Various plane shapes designed to reduce radar detection were developed in earlier prototypes, named A-1 to A-11. The A-12 included a number of stealthy features including special fuel to reduce the signature of the exhaust plume, canted vertical stabilizers, the use of composite materials in key locations, and the overall finish in radar absorbing paint.

In 1960, the USAF reduced the radar-cross-section of a Ryan Q-2C Firebee drone. This was achieved through specially designed screens over the air intake, radar-absorbent material on the fuselage and a special radar-absorbing paint.

During the 1970s the U.S. Department of Defense launched project Lockheed Have Blue, with the aim of developing a stealth fighter. There was fierce bidding between Lockheed and Northrop to secure the multibillion-dollar contract. Lockheed incorporated into its bid a text written by the Soviet/Russian physicist Pyotr Ufimtsev from 1962, titled Method of Edge Waves in the Physical Theory of Diffraction, Soviet Radio, Moscow, 1962. In 1971 this book was translated into English with the same title by U.S. Air Force, Foreign Technology Division.The theory played a critical role in the design of American stealth-aircraft F-117 and B-2. Equations outlined in the paper quantified how a plane's shape would affect its detectability by radar, its radar cross-section (RCS).This was applied by Lockheed in computer simulation to design a novel shape they called the "Hopeless Diamond", a wordplay on the Hope Diamond, securing contractual rights to produce the F-117 Nighthawk starting in 1975. In 1977 Lockheed produced two 60% scale models under the Have Blue contract. The Have Blue program was a stealth technology demonstrator that lasted from 1976 to 1979. Also the Northrop Grumman Tacit Blue played a part in the development of composite material and curvilinear surfaces, as well as Low Observables, fly-by-wire, and other stealth technology innovations. The success of Have Blue led the Air Force to create the Senior Trend program which developed the F-117.

Copyright © 2025 Stealth
Powered by Stealth